Trying to find math inside everything else

Airport Planning Project

On my flight to San Francisco today, when the pilot mentioned that we have leveled off at our cruising altitude of 32000 feet, we had just passed Scranton, according to the interactive map. This reminded me of a right-triangle trig project I did my first few years, before it was dropped from the Algebra I curriculum.

I first had the idea by doing a Dan Meyer-style textbook problem makeover. When I was looking for trig problems in the textbook I was using, I saw one that was something like this:

A pilot is flying his plane at 5 miles up and starts his descent 300 miles from his destination. What was his angle of descent?

If I were a pilot, what would I need to figure out? Most likely, I would know I need to land at a certain angle – what I would need to determine is when I should start landing my plane. So I turned the problem around. Then I thought, considering what angles we need to climb at, angles we need to land at, and how high up we need to fly, what’s the minimum distance I could get between two airports that have a connecting fight? (Assuming direct paths.) And so and made the following project:

My students had a lot of fun with this project (even if I did get countries named things like Ratchetopia). Things would get tricky sometimes with scale (I think I had them use something like 1 inch = 50 miles), but overall the process went well. However, sometimes it could be paralyzing, having so many choices of where to put the airports.

Sadly, I don’t have any pictures of the projects my students made. (Maybe on my old phone?)

Trig without Trig

Over the summer I made a Donors Choose page in the hope of getting some clinometers, so that we can go out into the world and use them to calculate the heights of objects like trees and buildings. And we did!
I created the Clinometer Lab as an introduction to Trigonometry. As such, prior to the lab, they had not seen any trig at all. So I started off with this video as the homework from the night before.

In class, we talked about how, when the angle is the same, the ratio of the height and shadow is the same. And how, long ago, mathematicians made huge lists of all of these ratios.
So if they told me any angle, I could tell them the ratio, and then they could just set up the proportion and solve.

So we left the building and went to the park, armed with clinometers, measuring tape, calculators, and INBs, so do some calculations. I had the students get the angles from their eyes to the height of a tree, from two different spots, and the distances, so they could set up a proportion and discover the height of the tree. (When they finished, they did a nearby building. If they finished that too, the extension problem was to switch it up: given the height of a famous building, the Metlife Tower, that they could see from the park, and determine how far away they were.)

It went really well, and I think they got the idea. The fact that they could choose which tree to measure and were given free range of the park, and could choose where to stand to look at the top, but always had to come back to me to get their ratio, worked seamlessly. I could check in on them easily and keep them on the right path. (Especially with my co-teacher there to keep them all wrangled, or the AP who observed/helped chaperone the classes without my co-teacher.)

The next class, I revealed to them that I was not using that crazy chart to give them their ratio, but rather they can just get it themselves from the calculator, which basically internalized the list. Then they got it, that is was just ratios and proportions, not some crazy function thing.

Trig as a topic did not go great in my class, but that is the fault of my follow-up lesson, where I tried to squeeze in too much and didn’t do any practice, not that fault of this lesson, which still sticks in their minds. Later in the year we were doing a project about utilizing unused space, so we picked empty lots but couldn’t get in. So in order to figure out how big they were, we used clinometers, and trig. Now that’s a real world application.

The Lab

Clinometer Lab Instructions

Clinometer Lab Sheet