## Trying to find math inside everything else

### The Cold War

In my first year teaching I came up with this activity for working with quadratic-linear systems, based in the Cold War and missile defense. It didn’t work as well as I hoped, mostly because it was too complicated, but I like the core of the idea. Maybe now, with more experience and the brainstorming power of the MTBoS, we can think of a way to make it work. But first, I’ll describe what .i actually did.

Students entered the room to find the desks rearranged – four big group tables, and the room split down the middle by a wall of desks, representing the “Iron Curtain.” Each student was then randomly assigned to one of four groups: US Missile Command, US Missile Defense, USSR Missile Command, and USSR Missile Defense. (Only one student, the son of the Georgian consulate, demanded to be switched from the USSR group to the US side.)

Each student then had two roles – one of the roles was their job on the team. Treasurer, secretary, chief engineer, etc. These roles were public. Their other roles were secret – they were things like Double Agent, Handler, FBI Agent, Innocent.

The idea was that each missile team was trying to build a missile that could hit the other country, while bypassing their missile defense. And the missile defense teams were trying to shoot down the missiles. The missiles were represented by quadratic equations and the missile defense by linear functions. But the best way to find out what the other side was planning is through espionage.

Of course, the thing they’ll probably learn is that the missile defense fails and everyone dies – we all lose the cold war.

Below are the files I made way back when. What are your ideas to make this workable?

### Counting Circles

Because I had different warm-up routines I wanted to try, I’m this week ending my second go at Counting Circles, and won’t be using them again until next year. But they’ve had a great run! I think the students got a lot out of them, and I experimented with them in lots of different ways, a few of which I captured as pictures, so I wanted to share them below.

I started, as with Sadie’s recommendation, with just a simple off-decade 10s, to practice the idea.

One of the earlier things I tried was do work with an open inequality – that can count by any amount they want, as long as they don’t go below 40.

Later on, we counted by monomials and, then, binomials. A fun thing that tricks them up is to swap the order of the binomial. (Commutative property!) Then see how starts adding the wrong thing together, just because they were going left to right.

Counting up with one term and down with another can take a few moments for some students.

Later, after we had done exponential functions, I tried out a geometric sequence. But I had to make sure I started low enough that we could get around the class!

Another geometric sequence was the powers of 10. I mostly wanted to make sure they could name them all! They weren’t allowed to just say digits for this one, they had to say the names.

Technically this one is still geometric, though it didn’t feel the same. But I also was a stickler here, too – if a kid said “2 x 26” that’s what I wrote, instead of “2x^26”

As my last thing, today we did a quadratic counting circle. Now, we haven’t done quadratic functions yet – that starts next week. So this was somewhat of a preview. They also weren’t expecting the perfect squares – only one students noticed that in time to help them on their turn. There was a lot more collaboration on this circle because they had to refer back explicitly to what the last person did. I’ll do two more of these (triangle numbers tomorrow), and then that’s it!