Trying to find math inside everything else

Posts tagged ‘math education’

Wits and Wagers and Number Sense

I bought my boyfriend the game Wits and Wagers for Christmas, after seeing it on Tabletop and thinking he would enjoy it. (Feel free to watch the episode of Tabletop for a good example of how it works, though they play the Family edition, and we have the standard version.)

The basic premise of the game is that everyone is asked the same question, which always has a numerical answer (including dates). Everyone secretly writes down their guess, with the goal of being the closest without going over. Then, everyone reveals their answers and they are put in order on the board. At that point, everyone bets on which they think is the best answer. The answer is revealed, and the person who wrote the best answer and everyone who guessed it gets points.

I played it with him and some friends on New Year’s Eve, and saw some interesting results that made me think the game would be a good tool for developing number sense. In fact, one of his friends said that she wasn’t good at the game because she had no idea who was even a good range for an answer. But the game itself provides you with that sense, by consensus.

I know I read once, though I can’t remember where, about how when prompting a class for a guess, most student guesses will fall somewhere in the same order of magnitude as the first guess, even if that first guess is super ridiculous. (Like, for a guess at how tall the Eiffel Tower is, the first person guesses 6 miles. No, that can’t be right, the second person says. More like 4 miles.) The way to avoid this is to have people right down their answers ahead of time, a mechanic built into the game.

Sometimes that leads to interesting situations. One question asked how many episodes of Friends there had been, and this had been our responses:

Wits and Wagers

This almost feels like a Math Mistakes question, where did this person go wrong in their guess? But comparing their sense of answer to the consensus helps us get an idea of what’s right, and what’s misinterpreted. (In this case, the person thought it was asking how many episodes have been shown on TV ever, like in syndication and whatnot, in which her answer then makes a lot of sense. So never dismiss an answer just because it seems so far off the mark. There’s always a reason!)

A lot of questions had a historical bent as well (years), so then can help build a sense of time as well. (As long as a rogue history teacher isn’t sitting nearby shouting out answers even though he isn’t playing the game.)

In the end, I think this game could go along with something like Estimation180 for building number sense, but in a more communal gaming way. If you talk to people about how they chose their numbers, we can get a sense of their mathematical thinking. And that’s worth a lot.

Dragonbox in the Classroom

Last week, my students spent 2 double periods playing Dragonbox, the iPad (and computer) game designed to teach solving linear equations, which I think it does quite well. (I agree with many of Max Ray’s opinions when he writes about it here. Which makes sense, as Max first showed me the game this past summer.)

While one of my goals was teaching solving equations, it was not my only one, which is what I wanted to talk about here. (I’ll probably review the game itself later.) I told the students that I had forgotten to make a lesson, so we were just going to play a game on the iPad today. What I did want, though, was for them to home their ability to figure out how something works. To me, this is an even more important lesson to get than just solving equations.

To this end, I talked about how websites like GameFAQs has walkthroughs for all sorts of games, but one walkthroughs were all written by regular players, who sat down with a game right when they bought it, took notes on what they did, figured things out, and shared with others. So we were going to take that role. In their Interactive Notebooks, I told them to write down every thing they could do in the game. Whenever they came across a new rule, some new ability, or a new solution to a tough puzzle, write it down. Example: “Tap the green swirl to make it disappear.”

The surprising part was, they really did it, and quite well. Hey even discovered a lot of things about the game that I didn’t know, because I always played it “perfectly,” since I knew the rules of algebra. (Example: if you have a denominator under a green swirl (aka 0) and tap it, the while thing disappears. Or a green swirl won’t disappear if it is the only thing left on its side, which was fun to talk about later.)

At the end of my first double, with about 20 minutes left, I compiled all the notes they took using Novel Ideas Only (where all students stand and share things they have written, only sitting once everything they have written down is said, either by themselves or someone else), creating a master list of actions they could refer to next time.

The next class, they came in and immediately started playing. I must say, the entire time I used it, the kids were really into it, and most of them were really persistent. Some occasionally requested help, but my intervention was minimal. This time, I had this answer several questions after they had played some more, which really dove into the meat of the game. What does this card or action in the game represent in math? Why does a certain rule in the game happen that way?

One thing I really loved is how solid the game got them on how dividing something by itself won’t make it go away. It was a tactic many of them tried in several levels and it always got them stuck. I focused on the difference between “zeroing out” and “oneing out.”

We had one major downside, technology-wise, though. Each game had four save files, which worked out, because I had four sections. So one file per student. But there is nothing to stop a student in one class from playing on, or, even worse, DELETING, another student’s file. I e-mailed the company, and they said a solution would happen in a future update.

Today was the follow-up quiz, and they mostly did well. The things they stuck on was something that wasn’t well covered in the game: the distributive property. But we’ll work on that.

Steepest Stairs Redux

Last year I made a lesson about determining the steepest stairs, using pictures my co-teacher and I took and based on an idea from Dan Meyer. It took about a period, and was mostly teacher-led. But after arguments and deep thinking about slope, I wanted to go into the lesson deeper, so I turned it into a lab.

I started the same way, throwing up the (new and improved) opening slide and asking which they thought was the steepest and which was the shallowest.

Screen shot 2012-11-26 at 1.55.16 PM

I really like this new improved one because I took a picture of the toy staircase from the board game 13 Dead End Drive (middle left). Last time, there were overall agreement on the shallowest (the Holiday Market) while there was disagreement on steepest. This time, because the toy was tiny (if not shallow), we had some disagreement there, which really let us tease out some definitions of “steeper” and “shallower.”

Once we had definitions of steeper (which usually came out to something like “closer to vertical” or “at a bigger angle”), I handed out the pictures on a sheet of paper and asked them to develop a method for determine which was steeper, or the steepest. I mentioned coming up with some sort of “steepness grade” (because I thought it would be amusing to throw the word “grade” in there).

So I let them struggle, and come up with what information they had to ask me for, which I would then provide. If I had to do it again, I would also have pictures of the width of each stair, as a distracter, because some kids asked for it. Interestingly, some also asked for the angle, because of our prior experience in the year with the clinometers. I told them I didn’t have the clinometer with me at the time. One kid called me on it, because she knew I had a clinometer app on my iPad. So I told her (truthfully) some of the pictures were taken last year, before I had it.

So I had them come up with their own measures. If they tried to base it off of only height or only depth, I deflected with examples of really tall, really shallow stairs, or really short, really steep stairs. TallShallow

By the end of the classes, students usually came up with one of three different measures: slope, the inverse of slope (depth over height), and grade (that is, slope as a percentage).

IMG-20121127-00127IMG-20121127-00125

So they had to then reason as to why they might prefer height/depth to depth/over. (Their logic: it seems more natural to have bigger numbers be steeper stairs, rather than the other way around.) And so it was that point that I told them this “steepness” grade that they developed was often called “slope” by mathematicians.

At which point, I got a big “Ohhhhhhhhhhh.” Which always makes it worthwhile.

The Materials

Stairs – Portrait

Stairs – Landscape

Steepest Stairs Lab

Slope

At Twitter Math Camp, Karim Kai Ani and I debated for a bit on what slope really means, and how best to teach it. Since slope is the upcoming topic for this week, I thought it would be good to reflect back on our arguments.

Karim argued that slope should always have units, and that removing the units created a contextless concept that made it difficult for students to grasp. I argued that, while that is true and units are useful in many cases, the concept of slope as a unitless ratio is an important concept, digging deep into what it means to be a ratio, so that a line with a slope of 2 could be 2 miles up, 1 mile over, or 2 cm up, 1 cm over, it didn’t matter. The differences are exemplified in two of our lessons: my “Steepest Stairs and Wacky Measurements” (soon to be updated) and his “iCost.”

(c) Mathalicious 2011

I mentioned this debate at dinner last night to my boyfriend, who is a math PhD candidate. He said what we were talking about reminded him of the difference between a rate and a ratio. He said that a ratio was a “quotient of quantities of the same unit” and a rate was a “quotient of quantities of differing units.” Further clarification was that a ratio’s units had to be the same dimension, while a rates did not.

So then, really, the question becomes, is slope a rate or a ratio?

It’s both. Karim argued for rate but that’s really just the algebraic or calculus-based definition of slope. My argument for ratio was a geometric one. Both are important, and are related, which is why they go by the same name.

But I wonder if it would be easier if the concepts had a different word. What if we only used “grade” or “gradient” for the geometric definition, and slope for the algebraic one? Or slope for the geometric, and just rate for the algebraic? The problem is they are so intertwined. For which there is only one person to blame.

Damn you Descartes!

Fish Populations and Proportions

One of the labs I did back at Banana Kelly was a fish population estimation lab. You may have seen something like it before elsewhere. The idea is to explore proportions and the mark and recapture technique of population estimation.

The gist is this: students have “lakes” filled with “fish” (boxes filled with lima beans). They use a sampling tool to collect a sample of fish and tag them all with stickers. Then they release the fish, mix them up, re-sample, and use proportions to determine the population of the lake. They do it a few times and average, then they count the actual population to see how close they were.

But I was at a BBQ the week before I did this lesson, and I was talking to my friend Rachel, who is a marine biologist. I mentioned the lab, and we talked about what they use tags for. One thing is to track populations over time, so they can determine the changes in populations since each different year has a different tag. I wondered if I could change the lab to include that.

(Rachel also dug up the video that I had students watch the night before. I’ve decide to have a little “flip” in my classroom by having students watch a video before we do a lab and start asking questions, which I can then address in the next class.)
So I thought about how I could change it. It actually took a lot of thinking, jotting things down on the white board, consulting with the living environment teacher to make sure I was on the right track. But I extended it, so now they would do at least 5 different calculations in the process, instead of spending all that time on just one proportion.

Now, students do the first part the same as before. Then, a random sample of fish “die” and are removed from the lake and put side, and a bunch of new fish are “born” by taking them from the bag of beans I had. Then when they took a sample of the new lake, they tagged the new fish (not already tagged) with a different color sticker. Now they had data from both years and could figure out the new population, and the difference from the old population.

Not every group got to the extension, but I think it improved the task overall.

The Materials

Fish Lab Instructions (formatted to fit in an INB)

The Lab Report

Math Labs

When I student taught at Banana Kelly High School, the 9th grade math and science teachers there used a wonderful curriculum called Thinking Math and Science, which they had been developing for about 10 years. Those classes were integrated with math and science together, and so very often the classes were doing labs. But the labs weren’t just science, they just as often had math labs. And I wanted to bring that idea into my own classroom.

I had decided last year that I wanted to introduce new topics with labs, so the students could explore an idea before getting the mathematical language that does with it. When I sat down over the summer with my co-teacher Sarah, we created a template for our math lab reports, taking the steps of the scientific method and putting a mathematical twist on it. Here’s an example of it, using the first lab we did, Pythagorean Theorem in 3D.

 

The beginning is much the same, asking the driving question that we want to answer. Then, instead of background research, since I want to work with a low barrier of entry and move up, we have “What do you notice?” (thanks @maxmathforum).

The next step is to construct a hypothesis. This is often still relevant with math, of course, and may go unchanged for some labs. But I thought another way we could look at a hypothesis is an estimate, since both are educated guesses, right? I set it up using Dan Meyer’s suggestion of “too low, too high, actual guess,” which gives us nice bounds, and I think this does it visually as well. Although not completely, since some students haven’t gotten it, so I wonder if I can improve on that. (I have two versions in the file: the arrow one is the one I used, and the dotted line one is a new idea I have, I’ll try it soon.)

Then we do our calculations, which is our experiment, they go hand in hand. And finally we analyze what we did with discussion questions.

I’m don’t think the format/template is perfect, but I think it’s a start.

How Many Representatives Should We Have

Back in 1788, James Madison wrote up 20 proposed articles to amend to the constitution. 12 of those were approved by Congress. The latter 10 were ratified by the states and became the Bill of Rights. The second was ratified over 200 years later and became the 27th Amendment. But Article the First was never ratified. Here’s what it said (corrected):

After the first enumeration required by the first article of the Constitution, there shall be one Representative for every thirty thousand, until the number shall amount to one hundred, after which the proportion shall be so regulated by Congress, that there shall be not less than one hundred Representatives, nor less than one Representative for every forty thousand persons, until the number of Representatives shall amount to two hundred; after which the proportion shall be so regulated by Congress, that there shall not be less than two hundred Representatives, nor less than one Representative for every fifty thousand persons.

Back in 1911, Congress froze its size at 435 members of the House of Representatives, and so the amount of people representative by each representative has grown extraordinarily. (Note that this is before we even had all the states (only 46), so the Reps continued to spread thinner.) The average district size now is about 700,000 people, which is a lot of people and opinions to accurately represent. Of course, if we followed Article the First to the letter, we would now have about 6300 representatives, which seems like a lot.

Source: thirty-thousand.org

But what if the article is a formula, not meant to stop at districts of 50000? The way it is written, it seems like every 100 Representatives would prompt an increase in the size cap of districts by 10000. So how could we model that to determine how many reps we need?

Well, in general, the population divided by the number of people in the average district should give us the number of reps. So if P = U.S. Population, R = number of representatives, and D = max size of district, then R=\frac{P}{D}.

To represent Article the First, since 0-100 reps have 30000 each, 100-200 have 40000 each, 200-300 have 50000, etc, it seems like we could say R=\frac{D-20000}{100} to give a rough estimate. (Anyone have anything more precise?) So we can substitute, as well as plugging in 308,745,000 for P (according to the 2010 census), to get

\frac{D-20000}{100}=\frac{308745000}{D}, and solving for D gets us approximately 186000 people per district. Plug in for D to get 1660 representatives. (Exact amount varies by the precise district make-up.) That seems quite possible, not even four times as many as we have now.

Follow-up questions to consider:

  • Is 700000 people too many to represent? Is 190000? What would be an ideal amount?
  • How would representing 30000 people in 1790 be different from representing that many people now? How does technology change how effectively we can represent people?
  • How could we accommodate having 1700 representatives? What changes would need to be made?
  • What other representative systems could you come up with? How would it work?
  • How would having more representatives change our current representation?
  • How are representatives apportioned in other countries? What methods do they use for determining the size?

For that last one, I think it’s interesting to just look at the Congressional districts of New York City as an example.

I live in District 12. It’s easy to see that the district is half in Manhattan, in the affluent Upper East Side, and half in Queens, in Astoria/Sunnyside/Long Island City. I think it would be very easy to believe that the desires of the people on the UES don’t always line up with the desires of the Queens constituents. Yet we are represented by just one person. However, with a smaller district, they can be divvied up more logically. All of Astoria has 166,000 people, which is almost a full district, and it would be nice to have a district that is clearly where you live.

Since US History doesn’t usually line up with Algebra, this idea might be hard to implement in math. Though it could work fine in Algebra 2. And it might work even better as a history lesson with a bit of math, instead of a math lesson with a bit of history? I dunno. But I think it can definitely be food for thought for any class.

Is Algebra 2 Necessary?

So, of course, Andrew Hacker’s article “Is Algebra Necessary?” had caused quite the stir, and the obvious answer to that question was “Yes, algebra is necessary.” But the article makes you think if all of what we learn of algebra is necessary. And I think it isn’t, but that comes from thinking about what high school is for.

Do we expect that, when a student gets to college, they can skip the lower levels of Biology because they took bio in high school? No, of course not. (Excepting AP courses, of course.) So what is our goal for learning biology in high school? It’s to provide a general foundation of the subject, that most people should know, and it prepares you for a college level course or major in Biology.

Really, all of what we learn in high school is designed to broaden our horizons, to provide experiences and content we wouldn’t see otherwise, and to provide a baseline of knowledge that we feel everyone should have.

I remember reading from someone, though I don’t recall who, that they had struggled through Algebra 2 and Pre-Calculus, slogging along, and then when they got to Calculus a light turned on. “This was why we’ve been learning everything we’ve done in the past two years! It was all for this!” Even the wikipedia page on Pre-Calc says “…precalculus does not involve calculus, but explores topics that will be applied in calculus.” It’s putting the work before the motivating problem, again.

But now thinking about the normal course sequence for a student that is not advanced: Algebra –> Geometry –> Algebra 2 –> Pre-Calculus –> Graduated from High School, so no Calc! So these students will have two whole years of math without the payoff that shows why we do it.

And as teachers we know that you need to start with the motivating factor, not have it at the end. So why don’t we have calculus first, before those two? If we consider our goal in high school is to spread ideas people might not see otherwise, I think Calculus has a lot of important ideas people should see that would improve their lives. Optimization? The very idea of it can improve how you look at all the problems in your life. Related rates, limits, the idea of changing rates and local rates, the relationships between functions, these are all good ideas to be familiar with.

Can the students learn these things without having done Algebra 2/Pre-Calc? I think so. As Bowman Dickson says, “The hardest part of calculus is algebra.” So what if we taught it in a way that didn’t rely on that? We can get the ideas across without jumping into the nitty-gritty of a lot of it. Save that for AP level classes, or for college calc. What you take in college is more in depth that high school, so it should be the same here.

Now, there would certainly be some stuff from Algebra 2/Pre-Calc that we really need first. But why not have those in Algebra 1? I accidentally taught several things from Alg 2 when I taught Alg 1 my first year, because they seemed like natural extensions of what we were doing, and I didn’t know they weren’t required until I started planning for the next year. But also, consider this. If we made Probability & Statistics one of the main courses of the math sequence, I don’t have to teach it in Algebra 1. I spent about 7 weeks on those topics last year. That’s 7 weeks of Alg 2 content I could fold in, without worrying about reviewing old stuff because we just did it.

So then the new math sequence could be Statistics –> Geometry –> Algebra –> Calculus. (And I think that might fit well with the science sequence of Biology –> Earth Science –> Chemistry –> Physics.)
Thoughts?

Math Needs to Be the Spark

At Twitter Math Camp I gave the following talk. The abstract from the program said:

When planning interdisciplinary projects, math teachers need to take the lead in order to create cohesive and authentic projects, and to ensure that the project doesn’t just become psuedocontext for their math goals. Uses two major interdisciplinary projects developed at my school as examples of how to bring all the subjects together, so math isn’t left out in the cold.

Here’s the talk:

Math Needs to Be the Spark from James Cleveland on Vimeo.

After that I opened to questions. The one that I remember was asked by @JamiDanielle: “How can you get other teachers who might not be on board for these types of projects to join in?” And I think this process is actually how. If you go to a teacher with an idea and just dump on them to figure out how to connect it to their class, it’s not going to end well. It’s easier and less work to just not take part. But if you go to them with an idea already half-formed of how they can implement it, it is much easier to build off of that idea and will make teachers more willing to work together.

The Projects

High Line Field Guide v5 – This is the High Line field guide project mentioned in the video, and first mentioned in this blog post, “The Start of the New Year.”

Intersession Project Requirements – It would be difficult to post everything we did in the Intersession project, but the overview from the video and this packet of requirements for the product should be useful. Anyone interested in more can ask.

No Right Answer

A bit ago I got yelled at by a commenter on Kate’s blog who claimed that being always right is why we like math. The problem with that point of view is that, while yes, you can always be right while doing computation, math isn’t just computation. So the other day I was talking with a friend of mine, and that prompted me to post the following tweets:

My friend Phil (@albrecht_letao) responded to the question, and he came up with an answer of $20/hr. When I worked it out with my friend, we came up with $14.25. Does that mean one of us is wrong, since we got different numbers?

No, of course not. What happened is we approached the problems in different ways. Phil only calculated the monetary value: with his amount, my friend would earn the same amount of money she does now. He figured this was an important way to look at it, for paying bills and whatnot. Our calculation came from thinking about how her time is being compensated. Since those 16 hours are being wasted (she has to work them for free; actually, she pays to lose that time), we calculated her “real” hourly rate and used that.

There can be more answers than even these two, depending on what you think is important. But it’s a clear example of a problem, solved using math, with no one right answer. That’s what math is about. I tweeted it thinking maybe it could be a problem worth considering in class, to show that essential idea to students.

What do you think?

P.S. The right answer, of course, came from @calcdave: